Digital Circuits ECS 371

Dr. Prapun Suksompong

 prapun@siit.tu.ac.th Lecture 17Office Hours:
BKD 3601-7
Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

Announcement

- Reading Assignment:
- Chapter 7: 7-1, 7-2, 7-4
- We will use the old handout from last time.

Logic Symbols: Latches and Flip-Flops

(a) Active-HIGH input S-R latch

(e) S-R edge-triggered flip-flops

(b) Active-LOW input $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latch

(f) D edge-triggered flip-flops

(c) Gated S-R latch

(g) J-K edge-triggered flip-flops

(d) Gated D latch

Gated D latch

- The D latch is a variation of the S-R latch.
- Has only one input in addition to EN.
- This input is called the D (data) input.
- Combine the S and R inputs into a single D input.

Example: Gated D Latch

(a) $E N$
(b) Q

Q follows D when the Enable is active.

Flip-Flop

- Latches sample their inputs (and change states) any time the EN bit is asserted.
- Flip-flops are synchronous: the output changes state only at a specified point on the triggering input called the clock (CLK)
- In other words, changes in the output occur in synchronization with the clock.
- An edge-triggered flip-flop changes state either at the positive edge (rising edge) or at the negative edge (falling edge) of the clock pulse.

Edge-Triggered Flip-Flops

"Edge-triggered flipflop" is redundant (all flip-flops are edgetriggered

Positive edge-triggered (no bubble at C input)

(a) $\mathrm{S}-\mathrm{R}$

(b) D

(c) J-K

Negative edge-triggered (bubble at C input)

Clock (CLK)

- In digital synchronous systems, all waveforms are synchronized with a clock.
- The clock waveform itself does not carry information.
- The clock is a periodic waveform in which each interval between pulses (the period) equals the time for one bit.

- Notice that change in level of waveform A occurs at the rising edge of the clock waveform.

D Flip-Flop

- The truth table for a positive-edge triggered D flip-flop shows an up arrow to remind you that it is sensitive to its D input only on the rising edge of the clock.
- The truth table for a negative-edge triggered D flip-flop is identical except for the direction of the arrow.

(a) Positive-edge triggered

(b) Negative-edge triggered

Ex: Positive-edge triggered D Flip-Flop

- Determine the Q output waveform if the flip-flop starts out RESET

Exercise

What specific function does this device perform?

Exercise

It is a D flip-flop hardwired for a toggle mode.
For example, if Q is LOW, \bar{Q} is HIGH and the flip-flop will toggle on the next clock edge. Because the flip-flop only changes on the active edge, the output will only change once for each clock pulse.

D Flip Flop: Implementation

- Tie two D-latches together to make a D flip-flop

- When C is $0\left(\mathrm{C}_{1}=1\right)$, the master latch is open and follows the D input.
- When C is $1\left(\mathrm{C}_{1}=0, \mathrm{C}_{2}=1\right)$, the master latch is closed and its output is transferred to the slave latch.
- The slave latch is open all the while that C is 1 , but changes only at the beginning of this interval, because the master is closed and unchanging during the rest of the interval.

D Flip Flop: Implementation

S-R Flip-Flop

J-K Flip-Flop

- Has two inputs, labeled J and K (along with the CLK).
- When both J and $\mathrm{K}=1$, the output changes states (toggles) on the rising clock edge.

Inputs			Outputs		
J	K	CLK	Q	\bar{Q}	Comments
0	0	\uparrow	Q_{0}	\bar{Q}_{0}	No change
0	1	\uparrow	0	1	RESET
1	0	\uparrow	1	0	SET
1	1	\uparrow	\bar{Q}_{0}	Q_{0}	Toggle

A J-K flip-flop connected for toggle operation is sometimes called a T flip-flop.

Example: J-K Flip-Flop

Exercise: J-K Flip-Flop

Q

Negative-Edge Triggered J-K FF

Caution

- When designing a circuit, do not change input values at the moment that the clock is rising.
- This is the time that the flip-flops read the input values.

Asynchronous Inputs

- Most flip-flops have other inputs that are asynchronous, meaning they affect the output independent of the clock.
- Two such inputs are normally labeled preset (PRE) and clear (CLR).
- These inputs are usually active-LOW.
- A J-K flip flop with active-LOW preset and CLR is shown.

Example

Exercise

Logic Symbols: Latches and Flip-Flops

(a) Active-HIGH input S-R latch

(e) S-R edge-triggered flip-flops

(b) Active-LOW input $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latch

(f) D edge-triggered flip-flops

(c) Gated S-R latch

(g) J-K edge-triggered flip-flops

(d) Gated D latch

Latches and Flip-Flops

- The most basic storage elements are latches, from which flip-flops are usually constructed.
- Can maintain a binary state indefinitely (as long as power is delivered to the circuit), until directed by an input signal to switch states.
- The major differences among the various types of latches and flipflops are the number of inputs the process and the manner in which the inputs affect the binary state.
- Although latches are most often used within flip-flops, they can also be used with more complex clocking methods to implement sequential circuits directly.
- The design of such circuits is, however, beyond the scope of this class.

Some Applications

- Divide the clock frequency by 2

Some Applications

- Divide the clock frequency by 4

Time to take a look at your own exam

- Put all of your writing tools down (under table / in your bag).
- You have 5 minutes to look at your own exam.

